Parallel multi-level solvers for spectral element methods
نویسنده
چکیده
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or highaspect ratio elements. The new algorithm incorporates an enriched coarse-grid operator which admits anisotropic resolution within elements, and a new parallel solution technique which mitigates the additional overhead of the enlarged coarse-grid system.
منابع مشابه
Parallel Multi-Level Solvers
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness. as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most compu...
متن کاملParallel Iterative Solvers for Ill-Conditioned Problems with Reordering
1. Preconditioned Iterative Solvers with Multicoloring In the previous work [1], author developed an efficient parallel iterative solver for finite-element applications on the Earth Simulator (ES) [2] using multi-level hybrid parallel programming model with MPI and OpenMP. The method employs three-level hybrid parallel programming model for SMP cluster architectures, consisting of MPI, OpenMP a...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملAn efficient direct parallel spectral-element solver for separable elliptic problems
An efficient direct parallel elliptic solver based on the spectral element discretization is developed. The direct solver is based on a matrix decomposition approach which reduces multi-dimensional separable problems to a sequence of onedimensional problems that can be efficiently handled by a static condensation process. Thanks to the spectral accuracy and the localized nature of a spectral el...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004